Misure di Radon in atmosfera presso i laboratori dell’Università degli Studi dell’Aquila (G. Pitari e N. De Luca)

Con l’apertura, il 10 ottobre 2014, del processo di appello ai sette esperti assimilati alla Commissione Grandi Rischi, si è riacceso il dibattito sulla prevedibilità dei terremoti con le misure del gas radon. Una precisazione della dott.ssa Natalia De Luca in merito è stata pubblicata sul sito del Quotidiano Nazionale Universitario. In questo spazio ospitiamo un contributo scientifico sull’argomento da parte della stessa ricercatrice e di G. Pitari, entrambi del Dipartimento di Scienze Fisiche e Chimiche dell’Università dell’Aquila. Anticipandone la conclusione, lo studio mostra che non ci fu alcuna variazione statisticamente significativa del flusso di emissione di Radon prima del terremoto del 6 aprile 2009.

*-*-*-*-*-*-*-*

Misure di Radon in atmosfera presso i laboratori dell’Università degli Studi dell’Aquila

di Giovanni Pitari e Natalia De Luca

Il Radon-222 è uno dei tanti gas presenti in tracce nella nostra atmosfera. A differenza di molti inquinanti di origine prevalentemente o parzialmente antropica (come CO, NO, NO2, VOC, PM, O3) con sorgenti primarie legate all’utilizzo di combustibili fossili (traffico, caldaie, industrie, produzione di energia elettrica), il Radon-222 è un gas nobile di origine totalmente naturale. Proviene dal suolo in seguito al decadimento radioattivo del Radio-224. Essendo gassoso fuoriesce dalle rocce che costituiscono la crosta terrestre e poi decade con un tempo di vita di circa 5.5 giorni emettendo particele alfa e producendo la cosiddetta progenie di decadimento (Polonio, Bismuto ecc.). A loro volta questi sono altri radionuclidi ancora instabili (ma in forma solida), con successive emissioni di particelle alfa e beta, fino al raggiungimento dello stato stabile con il Piombo-206. Le emissioni alfa (nuclei di Elio molto energetici) fanno del Radon un gas molto pericoloso per la salute umana: è stimato essere la seconda causa di mortalità per cancro al polmone fra i non fumatori (fonte EPA).

Le emissioni del Radon dalla superficie terrestre sono molto variabili, a seconda della tipologia di suolo. Sono circa zero sull’oceano o su neve e ghiacci ed hanno un valor medio caratteristico di circa 1 atomo-Rn per centimetro quadro al secondo sulla terraferma. La concentrazione volumetrica di Radon viene normalmente espressa in funzione della sua attività radioattiva in unità di Becquerel per metro cubo, dove un Becquerel (Bb) rappresenta una disintegrazione al secondo (con produzione di una particella alfa). Il flusso di emissione può essere così convertito da atomi-Rn per unità di tempo e superficie in Bq per metro quadro al secondo: 1 atomo-Rn/cm2/s corrisponde a circa 21 milli-Bq/m2/s. Il flusso dal suolo può essere modulato da diversi fattori: temperatura e contenuto di umidità (Fig. 1) ed anche tipologia delle rocce costituenti il suolo. Molti studi in letteratura scientifica ipotizzano e dimostrano anche la possibilità che il flusso di emissione di Radon possa essere significativamente perturbato dall’attività sismica locale, sebbene non sia mai stato dimostrato un legame diagnostico-precursivo fra perturbazioni nel flusso di emissione di Radon e l’attività sismica registrata localmente.

Fig. 1. Sensibilità del flusso di emissione di Radon dalle condizioni di temperatura e umidità del suolo

Fig. 1. Sensibilità del flusso di emissione di Radon dalle condizioni di temperatura e umidità del suolo

La concentrazione di Radon può essere misurata in molti modi, a seconda che si tratti di rilevazioni in aria o in acqua, indoor o outdoor, e con diverse tipologie di strumenti. Tuttavia il modo scientificamente più rigoroso è quello della misura outdoor (cioè in atmosfera), posto che sono poi necessarie serie di dati significative e in parallelo ad altre acquisizioni di tipo meteorologico, finalizzate allo studio della dispersione del tracciante dopo la sua emissione dal suolo. Misure indoor potrebbero essere largamente falsate o comunque significativamente impattate da perturbazioni non controllate nella ventilazione dell’ambiente di misura. Nota la concentrazione di Radon in atmosfera ad una certa altezza dal suolo (ad esempio dieci o venti metri al di sopra della superficie) ed in funzione delle ore del giorno per una serie di giorni consecutivi, è possibile cercare di calcolare indirettamente il flusso di emissione dal suolo e confrontare un periodo di tempo potenzialmente perturbato (per esempio da attività sismica, vedi Fig. 2) con un periodo di riferimento “imperturbato”. Ciò è possibile disponendo di un certo numero di dati meteo indipendenti, in particolare la velocità del vento, la temperatura, il gradiente termico (cioè le differenze in quota della temperatura) ed il tasso di precipitazione.

Fig. 2. Misura dell’attività sismica a L’Aquila dalla decade centrale di Marzo 2009 (fonte INGV)

Fig. 2. Misura dell’attività sismica a L’Aquila dalla decade centrale di Marzo 2009 (fonte INGV)

Si deve avere cura, ovviamente, di selezionare un periodo imperturbato nello stesso arco temporale dell’anno rispetto al periodo perturbato, per avere la massima riproducibilità delle condizioni climatiche e meteorologiche. Questo è il motivo alla base della scelta di Marzo 2004 come “riferimento imperturbato” rispetto a Marzo 2009 (condizioni pre-sisma). In quest’ultimo caso, le acquisizioni effettuate presso il laboratorio di Geofisica dell’Università dell’Aquila sono terminate il giorno 24 Marzo 2009, per motivi organizzativi legati alla rotazione di diverse attività sperimentali nella didattica erogata per le lauree Magistrali in Fisica e Scienze Ambientali. Tuttavia la Fig. 2 mostra chiaramente la presenza di una attività sismica significativa anche nei giorni precedenti il 24 Marzo e quindi atti a vagliare l’ipotesi di un qualche tipo di correlazione con le emissioni di Radon dalla superficie.

A questo punto si osserva che nelle ore diurne la concentrazione di Radon è sempre molto bassa (in modo quasi indipendente dalle stagioni e dalle condizioni ambientali), perché le condizioni di instabilità convettiva favorite dal riscaldamento del suolo favoriscono in ogni condizione ambientale una efficiente “diluizione” del gas in tutto lo strato limite atmosferico sovrastante il sito di misura considerato (alto circa un km da terra). Di notte invece la situazione è diversa. In condizioni di elevata stabilità e stratificazione verticale, associate ad assenza di venti e inversione termica al suolo, il Radon tende ad accumularsi negli strati atmosferici più bassi, essendo la “diluizione” del gas proveniente dalla superficie limitata a poche decine di metri da terra (Fig. 3).

Fig. 3. Schema di emissione di Radon dal suolo e condizioni di accumulo o diluizione atmosferica

Fig. 3. Schema di emissione di Radon dal suolo e condizioni di accumulo o diluizione atmosferica

È in altre parole lo stesso meccanismo dinamico che in periodi di elevata stabilità atmosferica (alta pressione e forte inversione termica al suolo) può portare alla formazione delle nebbie notturne nel fondo valle, fino al loro diradamento seguente all’irraggiamento solare nelle prime ore del mattino e conseguente riscaldamento del suolo e scomparsa dell’inversione termica, con ripartenza del mescolamento convettivo verticale. L’anti-correlazione fra la concentrazione di Radon e l’intensità del vento è mostrata in Fig. 4.

Fig. 4. Andamento medio diurno di Radon ed intensità del vento in funzione delle stagioni

Fig. 4. Andamento medio diurno di Radon ed intensità del vento in funzione delle stagioni

Un metodo statisticamente affidabile per ottenere indirettamente il flusso di emissione del Radon dalle misure collezionate in outdoor ad una certa altezza da suolo, è quello di considerare solo gli eventi di accumulo notturno in condizioni di elevata stabilità atmosferica. Si può quindi calcolare la differenza in concentrazione di attività di Radon fra l’alba e la sera precedente (tipicamente confrontando i valori alle sei del mattino con quelli delle otto la sera). Questa differenza, divisa per l’intervallo di tempo espresso in secondi e moltiplicato per l’altezza dal suolo della rilevazione, dà una stima affidabile del flusso. L’operazione statistica fondamentale da fare, a questo punto, è quella di mediare più eventi di questo tipo e soprattutto calcolare la dispersione dei dati intorno al valor medio (esattamente la loro deviazione standard), al fine di ottenere un valore statisticamente significativo del flusso e del suo intervallo di incertezza. La dispersione dei valori è intrinsecamente legata al fatto che le condizioni di stabilità notturna non sono mai perfettamente uguali nei vari giorni considerati.

Le misure di Radon collezionate presso il Laboratorio di Geofisica del Dipartimento di Scienze Fisiche e Chimiche dell’Università dell’Aquila durante la decade centrale di Marzo 2009 (e per confronto durante la stessa decade di Marzo 2004), e processate poi nel modo sopra descritto, hanno fornito i seguenti risultati per il flusso di emissione del Radon, espresso in mBq/m2/s:

Marzo 2009: 12.6, 22.4, 15.8, 22.3, 15.7, 18.3, 10.2, 12.3 per i giorni 13, 14, 15, 17, 18, 19, 20, 23

Marzo 2004: 16.5, 15.4, 16.0, 18.9, 26.1, 18.5, 19.1, 10.8 per i giorni 13, 14, 15, 16, 17, 18, 19, 20

con i seguenti valori medi e deviazioni standard:

Marzo 2009: 16.2 ± 4.5 mBq/m2/s     –       Marzo 2004: 17.7 ± 4.3 mBq/m2/s

La conclusione dello studio è che la variazione calcolata nel flusso di emissione medio di Radon fra Marzo 2009 e Marzo 2004 è pari a -1.5 mBq/m2/s (circa -8.5%) e che tale differenza è ampiamente minore dell’intervallo di incertezza nella stima di flusso effettuata con la tecnica sopra descritta. In altre parole, la conclusione è le seguente: le misure effettuate in atmosfera presso i locali del Dipartimento di Scienze Fisiche e Chimiche dell’Università dell’Aquila durante Marzo 2009 non mostrano alcuna variazione STATISTICAMENTE SIGNIFICATIVA del flusso di emissione di Radon.

Posted on October 20, 2014, in Note scientifiche and tagged , , , . Bookmark the permalink. Comments Off on Misure di Radon in atmosfera presso i laboratori dell’Università degli Studi dell’Aquila (G. Pitari e N. De Luca).

Comments are closed.

%d bloggers like this: